Optimal Boussinesq model for shallow-water waves interacting with a microstructure.
نویسندگان
چکیده
In this paper, we consider the propagation of water waves in a long-wave asymptotic regime, when the bottom topography is periodic on a short length scale. We perform a multiscale asymptotic analysis of the full potential theory model and of a family of reduced Boussinesq systems parametrized by a free parameter that is the depth at which the velocity is evaluated. We obtain explicit expressions for the coefficients of the resulting effective Korteweg-de Vries (KdV) equations. We show that it is possible to choose the free parameter of the reduced model so as to match the KdV limits of the full and reduced models. Hence the reduced model is optimal regarding the embedded linear weakly dispersive and weakly nonlinear characteristics of the underlying physical problem, which has a microstructure. We also discuss the impact of the rough bottom on the effective wave propagation. In particular, nonlinearity is enhanced and we can distinguish two regimes depending on the period of the bottom where the dispersion is either enhanced or reduced compared to the flat bottom case.
منابع مشابه
Boussinesq modeling of surface waves due to underwater landslides
Consideration is given to the influence of an underwater landslide on waves at the surface of a shallow body of fluid. The equations of motion which govern the evolution of the barycenter of the landslide mass include various dissipative effects due to bottom friction, internal energy dissipation, and viscous drag. The surface waves are studied in the Boussinesq scaling, with time-dependent bat...
متن کاملBoussinesq Modelling of Solitary Wave Propagation, Breaking, Runup and Overtopping
A one-dimensional hybrid numerical model is presented of a shallow-water flume with an incorporated piston paddle. The hybrid model is based on the improved Boussinesq equations by Madsen and Sørensen (1992) and the nonlinear shallow water equations. It is suitable for breaking and non-breaking waves and requires only two adjustable parameters: a friction coefficient and a wave breaking paramet...
متن کاملHigher-order Boussinesq equations for two-way propagation of shallow water waves
Standard perturbation methods are applied to Euler’s equations of motion governing the capillary-gravity shallow water waves to derive a general higher-order Boussinesq equation involving the small-amplitude parameter, α = a/h0, and long-wavelength parameter, β = (h0/l), where a and l are the actual amplitude and wavelength of the surface wave, and h0 is the height of the undisturbed water surf...
متن کاملBoussinesq systems in two space dimensions over a variable bottom for the generation and propagation of tsunami waves
Considered here are Boussinesq systems of equations of surface water wave theory over a variable bottom. A simplified such Boussinesq system is derived and solved numerically by the standard Galerkin-finite element method. We study by numerical means the generation of tsunami waves due to bottom deformation and we compare the results with analytical solutions of the linearized Euler equations. ...
متن کاملMechanical Balance Laws for Boussinesq Models of Surface Water Waves
Depth-integrated long-wave models, such as the shallow-water and Boussinesq equations, are standard fare in the study of small amplitude surface waves in shallow water. While the shallow-water theory features conservation of mass, momentum and energy for smooth solutions, mechanical balance equations are not widely used in Boussinesq scaling, and it appears that the expressions for many of thes...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 76 4 Pt 2 شماره
صفحات -
تاریخ انتشار 2007